pcm_mml
def pcm_mml(dataset, options=None)Estimate parameters for partial credit model.
Estimate the discrimination and difficulty parameters for the partial credit model using marginal maximum likelihood.
Args
dataset- [n_items, n_participants] 2d array of measured responses
options- dictionary with updates to default options
Returns
discrimination- (1d array) estimates of item discrimination
difficulty- (2d array) estimates of item difficulties x item thresholds
Options
- max_iteration: int
- distribution: callable
- quadrature_bounds: (float, float)
- quadrature_n: int
Expand source code
def pcm_mml(dataset, options=None): """Estimate parameters for partial credit model. Estimate the discrimination and difficulty parameters for the partial credit model using marginal maximum likelihood. Args: dataset: [n_items, n_participants] 2d array of measured responses options: dictionary with updates to default options Returns: discrimination: (1d array) estimates of item discrimination difficulty: (2d array) estimates of item difficulties x item thresholds Options: * max_iteration: int * distribution: callable * quadrature_bounds: (float, float) * quadrature_n: int """ options = validate_estimation_options(options) quad_start, quad_stop = options['quadrature_bounds'] quad_n = options['quadrature_n'] responses, item_counts = condition_polytomous_response(dataset, trim_ends=False, _reference=0.0) n_items = responses.shape[0] # Interpolation Locations theta = _get_quadrature_points(quad_n, quad_start, quad_stop) distribution = options['distribution'](theta) # Initialize difficulty parameters for estimation betas = np.full((n_items, item_counts.max()), np.nan) discrimination = np.ones((n_items,)) partial_int = np.ones((responses.shape[1], theta.size)) # Not all items need to have the same # number of response categories betas[:, 0] = 0 for ndx in range(n_items): betas[ndx, 1:item_counts[ndx]] = np.linspace(-1, 1, item_counts[ndx]-1) ############# # 1. Start the iteration loop # 2. Estimate Dicriminatin/Difficulty Jointly # 3. Integrate of theta # 4. minimize and repeat ############# for iteration in range(options['max_iteration']): previous_discrimination = discrimination.copy() previous_betas = betas.copy() # Quadrature evaluation for values that do not change # This is done during the outer loop to address rounding errors # and for speed partial_int *= 0.0 partial_int += distribution[None, :] for item_ndx in range(n_items): partial_int *= _credit_partial_integral(theta, betas[item_ndx], discrimination[item_ndx], responses[item_ndx]) # Loop over each item and solve for the alpha / beta parameters for item_ndx in range(n_items): # pylint: disable=cell-var-from-loop item_length = item_counts[item_ndx] new_betas = np.zeros((item_length)) # Remove the previous output old_values = _credit_partial_integral(theta, previous_betas[item_ndx], previous_discrimination[item_ndx], responses[item_ndx]) partial_int /= old_values def _local_min_func(estimate): new_betas[1:] = estimate[1:] new_values = _credit_partial_integral(theta, new_betas, estimate[0], responses[item_ndx]) new_values *= partial_int otpt = integrate.fixed_quad( lambda x: new_values, quad_start, quad_stop, n=quad_n)[0] return -np.log(otpt).sum() # Initial Guess of Item Parameters initial_guess = np.concatenate(([discrimination[item_ndx]], betas[item_ndx, 1:item_length])) otpt = fmin_slsqp(_local_min_func, initial_guess, disp=False, bounds=[(.25, 4)] + [(-6, 6)] * (item_length - 1)) discrimination[item_ndx] = otpt[0] betas[item_ndx, 1:item_length] = otpt[1:] new_values = _credit_partial_integral(theta, betas[item_ndx], discrimination[item_ndx], responses[item_ndx]) partial_int *= new_values if np.abs(previous_discrimination - discrimination).max() < 1e-3: break # TODO: look where missing values are and place NAN there instead # of appending them to the end return discrimination, betas[:, 1:]
Last modified April 13, 2020: Added unfolding function. (c853110)