rasch_full
def rasch_full(dataset, discrimination=1, options=None)Estimates difficulty parameters in Rash IRT model.
Args
dataset- [items x participants] matrix of True/False Values
discrimination- scalar of discrimination used in model (default to 1)
options- dictionary with updates to default options
Returns
difficulty- (1d array) difficulty estimates
Options
- max_iteration: int
- distribution: callable
- quadrature_bounds: (float, float)
- quadrature_n: int
Expand source code
def rasch_full(dataset, discrimination=1, options=None): """ Estimates difficulty parameters in Rash IRT model. Args: dataset: [items x participants] matrix of True/False Values discrimination: scalar of discrimination used in model (default to 1) options: dictionary with updates to default options Returns: difficulty: (1d array) difficulty estimates Options: * max_iteration: int * distribution: callable * quadrature_bounds: (float, float) * quadrature_n: int """ return onepl_full(dataset, alpha=discrimination, options=options)[1]
Last modified April 7, 2020: Updating documentation. (3da0254)