def mml_approx(dataset, discrimination=1, scalar=None)
Difficulty parameter estimates of IRT model.
Analytic estimates of the difficulty parameters in an IRT model assuming a normal distribution .
dataset
discrimination
scalar
difficulty
def mml_approx(dataset, discrimination=1, scalar=None):
""" Difficulty parameter estimates of IRT model.
Analytic estimates of the difficulty parameters
in an IRT model assuming a normal distribution .
Args:
dataset: [items x participants] matrix of True/False Values
discrimination: scalar of discrimination used in model (default to 1)
scalar: (1d array) logarithm of "false counts" to "true counts" (log(n_no / n_yes))
Returns:
difficulty: (1d array) difficulty estimates
"""
if scalar is None:
n_no, n_yes = get_true_false_counts(dataset)
scalar = np.log(n_no / n_yes)
return (np.sqrt(1 + discrimination**2 / 3) *
scalar / discrimination)