mml_approx
def mml_approx(dataset, discrimination=1, scalar=None)Difficulty parameter estimates of IRT model.
Analytic estimates of the difficulty parameters in an IRT model assuming a normal distribution .
Args
dataset- [items x participants] matrix of True/False Values
discrimination- scalar of discrimination used in model (default to 1)
scalar- (1d array) logarithm of "false counts" to "true counts" (log(n_no / n_yes))
Returns
difficulty- (1d array) difficulty estimates
Expand source code
def mml_approx(dataset, discrimination=1, scalar=None): """ Difficulty parameter estimates of IRT model. Analytic estimates of the difficulty parameters in an IRT model assuming a normal distribution . Args: dataset: [items x participants] matrix of True/False Values discrimination: scalar of discrimination used in model (default to 1) scalar: (1d array) logarithm of "false counts" to "true counts" (log(n_no / n_yes)) Returns: difficulty: (1d array) difficulty estimates """ if scalar is None: n_no, n_yes = get_true_false_counts(dataset) scalar = np.log(n_no / n_yes) return (np.sqrt(1 + discrimination**2 / 3) * scalar / discrimination)
Last modified April 15, 2020: Adding doc strings to utility functions. (99abcbc)